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Particle motion in storage rings is confined by various aperture limits, the size of which restricts
the performance of the ring in terms of injection efficiency, lifetime, etc. Intra-beam scattering makes
particles sweep a large portion of the phase space where their motion may eventually be resonantly or
chaotically excited to large amplitudes leading to collision with the vacuum chamber. We report here
the studies performed at the Advanced Light Source (ALS) on the on- and off-momentum particle
motion that provides a good understanding of these limitations. Using off-momentum simulations
and experiments together with Frequency Map Analysis, we could precisely correlate the beam loss
areas with the resonance locations. The very good agreement between simulations and experiments
allowed us to provide guidance for avoiding these dangerous areas. This analysis results in predictive
improvements of the momentum aperture which actually led to a lifetime increase of 25% at the
ALS for very high bunch charge.

I. INTRODUCTION

Charged particle storage rings are used for a variety
of science and technology applications — for example
as synchrotron radiation light sources for biology, chem-
istry, and materials science, and as colliders for high-
energy physics. In these storage rings, bunched parti-
cle beams travelling near the speed of light circulate for
many hours. The motion of an individual particle can
be described in terms of transverse (betatron) and longi-
tudinal (synchrotron) motions with respect to the refer-
ence particle. Some of these particles may get lost due to
various aperture limitations. The momentum aperture
is defined as the maximum momentum deviation that a
particle can have without becoming unstable and get-
ting lost by colliding with the vacuum chamber of the
storage ring. The momentum aperture is determined by
the complex 6-Dimensional dynamics of the particle. Be-
cause of the complexity of the particle dynamics, up to
now there have been unexplained discrepancies between
the predicted and measured momentum aperture [1–11].

Having a good understanding of the momentum aper-
ture is important because it is one of the main perfor-
mance limitations for storage rings. A primary reason
that particles become lost is that they gain or lose enough
momenta to exceed the momentum aperture via scatter-
ing with gas particles in the ring (Bremsstrahlung [12]),
via collisions with other particles within the bunch
(intra-beam and Touschek scattering [13]), or via col-
lisions with particles in other bunches (beam-beam
Bremsstrahlung [14]). The rate at which particle get lost
determines the beam lifetime. Long beam lifetimes are
desirable to the users of synchrotron light source rings
and collider rings. At synchrotron light facilities, long
lifetimes increase the integrated photon flux, reduce the
frequency of refills, and improve the stability of the beam
by reducing thermal loading effects due to the varying
current. For collider rings long beam lifetimes are also

important because they increase the integrated luminos-
ity delivered by the collider.

In those storage rings where the dominant lifetime
limitation process is Touschek scattering, the lifetime
strongly depends on the momentum aperture – stronger
than a quadratic dependency. Therefore, it is desirable
to operate such storage rings with as large a momentum
aperture as possible. This is particularly true for the
third generation synchrotron light source rings in which
circulating electron/positron bunches have a large charge
density, resulting in intensive Touschek scattering. The
Advanced Light Source (ALS) at Lawrence Berkeley Na-
tional Laboratory (LBNL) is such a third generation light
source operated for users since 1993 [1]. The nominal
operation parameters of the ALS are shown in Table I.
As seen in the table the Touschek lifetime of 9 hours
is much shorter than the vacuum lifetime of 60 hours.
Consequently, the Touschek lifetime limited ALS would
benefit greatly from a larger momentum aperture.

In fact the measured momentum aperture at the ALS
as well as other existing light sources and colliders are
smaller than the predicted values (for third generation
light sources the predicted values range between 3% and
5% [1, 3, 7] whereas measured values range between 1%
and 3% [4–8, 10, 15]). Because lifetime is such an im-
portant performance parameter, one of the main design
goals of new and future light sources such as SLS and
SOLEIL [16, 17] is to achieve even larger momentum
apertures — larger than 5%. Therefore it is important
to understand what limits the momentum aperture in
existing storage rings. This knowledge will help improve
the performance of existing light sources as well as to
help accurately predict and optimize the performance of
future storage rings.

The particle dynamics and momentum aperture have
been extensively studied at the ALS. Simple yet powerful
measurement techniques have been used to gain great in-
sight into the limitation of the momentum aperture. The
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measurements clearly show that the major limitation to
the momentum aperture is the transverse beam dynam-
ics, causing Touschek scattered particles to eventually
reach large vertical amplitudes where they get lost on
the vacuum chamber. Analysis of the measurement data
using Frequency Map Analysis allows us to understand
the details of the beam loss — identifying those reso-
nances that limit the momentum aperture. The knowl-
edge gained as a result of these measurements allows us
to adjust the machine parameters to improve the lifetime.

In this paper the results of these studies are presented.
In Section II we discuss the Touschek scattering and the
various apertures (RF, Physical, and Dynamic) that limit
the momentum aperture. In Section III measurements of
the momentum aperture are presented. Through these
measurements we show that the dynamic aperture is the
dominant effect that limits the momentum aperture and
that this limitation strongly depends upon the machine
conditions. In Section IV we examine the mechanism of
Touschek scattering in more detail — illustrating how
Touschek scattered particles can ultimately reach large
vertical amplitudes through nonlinear resonance excita-
tion and diffusion, causing them to collide with the vac-
uum chamber. In this section we also discuss using the
off-momentum transverse dynamics and Frequency Map
Analysis to gain insight into the full 6-Dimensional dy-
namics. In Section V measurements of the off-momentum
dynamics are presented. A comparison is made between
the off-momentum dynamics and the momentum aper-
tures presented in Section III. In Section VI we present
simulations of the off-momentum dynamics using our
model of the ALS and comparison is made with the mea-
surements (shown in Section V). Section VII shows the
relation between the momentum aperture and the verti-
cal physical aperture, while we end with some concluding
remarks in Section VIII.

II. TOUSCHEK LIFETIME AND MOMENTUM
APERTURE

In this section we will first summarize the various aper-
ture limitations and then discuss one of the processes
(Touschek scattering) that leads to particle amplitudes
which may exceed these aperture limitations.

In a storage ring, particles perform oscillations around
a central periodic closed orbit. The 6-dimensional phase
space coordinates are (x, px, y, py, δ, l), where x and y are
the horizontal and vertical position offsets, px and py are
the normalized horizontal and vertical momenta, δ is the
relative momentum deviation, and l is the relative path
length with respect to the synchronous particle in the
longitudinal direction. The particle oscillation is guided
by magnetic fields for the transverse motion and electric
fields (radiofrequency –RF–) for the longitudinal motion.
The final boundary for particle motion is the vacuum
chamber wall. Every particle will eventually get lost at
the vacuum chamber. Depending on the amplitude and

orientation of the oscillation we distinguish three aper-
ture limitations in the storage ring:

• The RF-momentum aperture, εRF, which corre-
sponds to maximum particle momentum deviation
at which the longitudinal motion remains stable
due to the confinement of the RF-fields.

• The physical aperture, xphys, which is related to the
linear motion. The transverse magnetic guide fields
are set up in a way to ensure stable particle motion.
At low amplitudes the motion can be described by
linear optical functions. The linear motion ampli-
tude which leads to a particle loss on the vacuum
chamber is called the physical aperture.

• The dynamic aperture, xdyn, which is related to the
nonlinear motion. With increasing amplitude the
motion of the particle becomes more and more non-
linear. A dynamic aperture can be defined as the
smallest initial amplitude of the particle whose mo-
tion will cause its amplitude to increase resonantly
or diffusively until the particle is lost against the
vacuum chamber [7, 16, 18, 19].

In the next three subsections these apertures will be
discussed in more detail which will be followed in a fourth
subsection by a discussion of Touschek scattering process.

A. RF-momentum Aperture

If the initial relative momentum deviation, δ0, of a par-
ticle is larger in absolute value than the RF-momentum
aperture, εRF, the particle stays outside of the stable area
in the longitudinal phase space and its momentum will
continue either to increase or decrease until it reaches a
sufficiently large value that the particle become lost from
the ring. The size of the RF-momentum aperture (or RF-
bucket height) provided by the accelerating voltage, VRF,
in the cavity is [20]:

εRF = ±

 2U0

παchE0

√(
VRF

U0

)2

− 1− arccos
(

U0

VRF

)


1
2

,

(1)
where αc is the momentum compaction factor, U0 is the
radiation loss per turn, h is the harmonic number, and E0

is the nominal energy. Equation 1 is derived neglecting
the details of quantum excitation and radiation damping,
which is valid for most storage rings. It should be men-
tioned that in the presence of radiation damping, not all
particles scattered outside the RF-momentum aperture
will be lost from the ring. It has been observed [21] that
there is a finite probability that some of the particles may
eventually be captured in other buckets. However in most
cases the fraction of particles recaptured is a small por-
tion of those scattered outside the RF-momentum aper-
ture.
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TABLE I: Nominal ALS parameters.

Parameter Description

E0 Beam energy 1.5–1.9 GeV

C Circumference 196.8 m

νx Horizontal tune 14.25

νy Vertical tune 8.20

ξnat
x Horizontal natural chromaticity -24.6

ξnat
y Vertical natural chromaticity -26.7

εx Horizontal emittance 3.5–5.5 nm rad

κ = εy/εx Typical emittance ratio 0.5–7%

Ib Bunch current (400 mA multibunch fill) ≈ 1.5 mA

Lifetimes (400 mA, 1.9 GeV)

τvac Vacuum lifetime ≈ 60 h

τtous Touschek lifetime (3.5% coupling) ≈ 9 h

τtotal Total lifetime ≈ 8 h

B. Physical Aperture

Assuming linear particle motion, the largest amplitude
a particle can have for a given momentum deviation δ
without hitting the vacuum chamber is determined by
the smallest vacuum chamber size normalized by the β-
function in the ring,

xphys(δ, s) =

√√√√ min
s1∈[0,L]

[(
x±vc(s1)− ηx(s1)δ

)2

βx(s1)

]
βx(s),

(2)
with ηx, βx being the dispersion and β-function, x±vc the
vacuum chamber half-size, and s the position along the
ring of circumference L. This is termed the physical aper-
ture. In a perfect storage ring with mid-plane symmetry,
the vertical dispersion is zero. Therefore, the vertical
physical aperture, yphys, calculated using Equation 2 by
replacing x by y, is momentum independent.

C. Dynamic Aperture

At large amplitudes, the motion of a particle is nonlin-
ear and at sufficiently large amplitudes the motion can be
resonantly excited or chaotic. Unlike the physical aper-
ture, the dynamic aperture separating stable (within a
given number of turns) and unstable trajectories is not a
hard boundary. Rather there exist high diffusion zones
where the particle can diffuse to large transverse ampli-
tudes. The presence of the vacuum chamber adds another
feature: the motion of some particles that are resonantly
excited to larger amplitudes can be dynamically stable
but the particles can still get lost because of the finite
size of a smaller vacuum chamber. The size of the dy-
namic aperture thus depends also, in this definition, on
the size of the vacuum chamber.

D. Touschek Scattering

Several mechanisms exist to excite large amplitude os-
cillations. During injection particles enter the ring far
away from the closed orbit and thus perform large am-
plitude oscillations. For example at the ALS a typical
injection offset is about 10 mm which is enough to clear
the injection septum. Particles may also scatter with
the residual gas and start oscillations. In densely filled
bunches particles may scatter among themselves (Tou-
schek effect). This process has been studied extensively
at the ALS leading to a better understanding about how
the different apertures contribute to the momentum aper-
ture and ultimately the lifetime.

A particle located in the center of an electron bunch
is Touschek scattered to some momentum deviation, δ0.
So with respect to the nominal particle, the coordinates
of this particle are (x = 0, px = 0, y = 0, py = 0, δ =
δ0, l = 0) — in the local frame of reference the par-
ticle may be scattered to any angle but in the labora-
tory frame it is mostly longitudinal. After this momen-
tum change, the particle starts an oscillation around a
new closed orbit [20]. With the assumption that the
dispersion function exists only in the horizontal plane,
the particle coordinates with respect to this orbit are:
(x = −ηxδ0, px = −η′xδ0, y = 0, py = 0, δ = δ0, l = 0).
Assuming linear motion the induced betatron amplitude
of this oscillation can be derived as:

xind(s, δ) =
√

βx(s)Hx(s)δ, (3)

with

Hx(s) = γx(s)ηx(s)2 + 2αx(s)ηx(s)η′x(s) + βx(s)η′x(s)2,
(4)

where αx, βx, and γx are the Twiss functions [22].
Equations 2, 3 and 4 are not valid for large momentum

deviations and transverse amplitudes [23]. Strong sex-
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tupoles lead to higher order dispersion which alters the
off-momentum closed orbit and Twiss functions. How-
ever at the ALS the difference between the momentum
independent and momentum dependent calculations of
the optical functions and the closed orbit is less than 5%
for momentum deviations of up to 5%.

The transverse momentum aperture, εtrans(s), defines
the maximum momentum deviation a particle can get at
a Touschek scattering event without getting lost on any of
the transverse aperture limitations. At a given position
s, εtrans(s) can be calculated by solving the following
implicit equation:

√
βx(s)Hx(s)εtrans = min [xphys(εtrans, s), xdyn(εtrans, s)] ,

(5)
where xdyn is computed with respect to the off-
momentum closed orbit. For Touschek scattered parti-
cles the momentum deviation, δ, can be either positive
or negative. Therefore the dynamic aperture limitation
given in equation 5 can be either in the positive or neg-
ative x direction.

At any position, s, of the ring the absolute momen-
tum aperture is the smaller of the s-independent RF-
momentum aperture, εRF, and the s-dependent trans-
verse momentum aperture, εtrans(s).

As an example Figure 1 illustrates a comparison of the
maximum allowable apertures and the induced oscilla-
tion amplitudes (thin blue lines). In the straight section,
where there is no dispersion, the induced amplitude is
zero. This means the particle will only change its energy
but not start a betatron oscillation. In the arc section
with a finite dispersion the induced amplitude shows a
linear behavior as can be seen from Equation 3. The in-
duced amplitude is (nearly) constant in the arcs because
Hx is (nearly) constant in the arcs.

The thick lines represent the various apertures. The
vertical green lines show the RF-momentum aperture
with εRF = 3%, corresponding to the present available
RF-voltage (for 1.5 GeV). The dashed-dotted red line
shows the physical apertures xphys. The solid red line
is a sketch of the dynamic aperture. As discussed later,
the size and the shape of the dynamic aperture strongly
depends upon the machine conditions (i.e. tunes, chro-
maticities, coupling).

The momentum aperture is defined as the smallest
crossing point of the induced amplitude and the small-
est of the apertures. As the induced amplitude varies
around the ring so does the momentum aperture. Fig-
ure 2 shows the momentum aperture for one cell of the
ALS. The solid line is the momentum aperture due to
transverse limitations as derived from Figure 1 (trans-
verse momentum aperture). The dashed-dotted line is
the RF-momentum aperture. In this case the momentum
aperture, ε(s), is defined by the RF-momentum aperture,
εRF, in the straight section and by the transverse momen-
tum aperture, εtrans, in the arcs.

Having defined the momentum aperture one can now
calculate the Touschek lifetime. Assuming a flat beam,
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mentum deviation δ. The thin blue lines represent the in-
duced amplitudes, xind, for an arc or a straight section of the
ring. Dashed-dotted red lines stand for the physical aper-
tures, xphys, the solid red line is the dynamic aperture, xdyn,
and the vertical green lines show the RF-momentum aperture,
εRF. This figure as well as the following ones is plotted at the
injection point (βx(s0) = 12 m).
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FIG. 2: Momentum aperture, ε, along one of the 12 cells
of the ALS storage ring. The solid line is the momentum
aperture from transverse limitations as derived from Figure 1
and the dashed-dotted line is the RF-momentum aperture.
The cell layout of the ALS is shown in the lower part of the
figure with the three dipoles of the achromat separated by
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and thus the main contribution of the velocity spread
coming from horizontal motion the lifetime due to the
Touschek effects is given by [13]:

τtou =
E3

0

LIb

∫
ε(s)2Vb(s)σ′x(s)

ln
(

1
1.78

σ′x(s)2E2
0

ε(s)2

)ds, (6)
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where L is the length of the ring, Ib is the bunch current,
E0 is the beam energy, Vb(s) = σLσx(s)σy(s) is the bunch
volume, and σ′x(s) is the angular spread of electrons in
the bunch. Note the bunch volume, angular spread and
momentum aperture vary around the ring.

III. MEASUREMENTS OF THE MOMENTUM
APERTURE

An easy way to study whether the momentum aperture
of a ring is solely determined by the RF-momentum aper-
ture, or whether it is also limited by other apertures, is
to vary the RF-voltage and measure the lifetime. At the
ALS, measurements of the Touschek lifetime as a func-
tion of the RF-voltage presented here were conducted at a
beam energy of 1.5 GeV under different operating condi-
tions. At each measurement point the synchrotron tune,
νs, was measured simultaneously, allowing one to calcu-
late the bunch length, σL, and the RF-voltage VRF [22]:

σL =
αcσEL

2πνs
, (7)

VRF =

√
ν4

s (2π)2 E2
0

(αch)2
+ U2

0 , (8)

where σE is the energy spread of the beam and U0 the
energy loss per turn due to synchrotron radiation. Know-
ing VRF, it is possible to calculate the RF-momentum
aperture (see Equation 1). To enhance the effect of the
Touschek scattering over other lifetime effects, a high cur-
rent per bunch was filled in a few equally spaced bunches.
The low number of bunches avoids multi-bunch instabil-
ities. The beam conditions thus were 1.5 mA/bunch and
a train of 16 bunches (out of 328) filled.

In Equation 6, the bunch volume is adjusted according
to the changing RF-voltage (Vb ∝

√
1/VRF), and is cor-

rected by a constant factor, A, which takes into account
any volume changes like variation of the coupling, insta-
bilities, etc. There is also assumed to be only 2 transverse
momentum apertures, εtrans(s), — one for the straights,
εstraight, and one for the arcs, εarc (see Figure 2). With
these simplifications, Equation 6 becomes:

τtous =
AE3

0σL(νs)
LIb


ε2

arc

∫

arc

σx(s)σy(s)σ′x(s)

ln
(

1
1.78

σ′x(s)2E2
0

ε2
arc

)ds

+ ε2
straight

∫

straight

σx(s)σy(s)σ′x(s)

ln
(

1
1.78

σ′x(s)2E2
0

ε2
straight

)ds


 , (9)

and the data can be fitted by nonlinear least squares with
just three parameters, A, εstraight, and εarc.

As an example, Figure 3 shows the measurement data
of lifetime versus RF-momentum aperture for the follow-
ing storage ring conditions: tunes set to νx = 14.25 and

νy = 8.20, chromaticities set to ξx = 0.4 and ξy = 4.4,
and an emittance ratio of about 7%. The solid blue line
represents a fit of the data using all 3 parameters A,
εarc, εstraight, the dashed-dotted red line shows the life-
time behavior if only the RF-momentum aperture deter-
mined the momentum aperture and the dashed green line
shows the lifetime behavior if only the RF-momentum
aperture and the transverse momentum aperture in the
arcs would determine the momentum aperture. The mea-
surement data shows that for large RF-momentum aper-
tures, the momentum apertures in both the straight sec-
tions and the arcs are primarily determined by the trans-
verse momentum aperture. Fitting the data results in
transverse momentum apertures of εstraight = 2.6% and
εarc = 1.75%.
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FIG. 3: Measurement of beam lifetime, τ , as a function of the
RF-momentum aperture with lines representing the fitted life-
time behavior (solid), the lifetime with no transverse aperture
restrictions (dashed-dotted) and with transverse aperture re-
striction only for particles scattered in the arcs (dashed).

Figure 4 shows measurement data for three different
sets of chromaticities, with the tunes at νx = 14.25 and
νy = 8.20, and the coupling adjusted to about 7%. As
one can clearly see, the momentum aperture and thus
the lifetime is very sensitive to the linear chromaticities.
The maximum achievable lifetimes differ in these cases by
more than a factor of 2. It is best for the nominal chro-
maticities (ξx = 0.4, ξy = 1.4), where the ALS is oper-
ated at in multi-bunch operation (blue symbols), and sig-
nificantly worse (red symbols) for a vertical chromaticity
increased by 3 units (ξx = 0.4, ξy = 4.4). The third case
(green symbols) is a case where both the horizontal and
vertical chromaticities are increased (ξx = 2.3, ξy = 4.3)
and the resulting maximum lifetime is 25% longer than in
the case where just the vertical chromaticity is increased.
At first sight this result might seem counter-intuitive.
Yet the reasons leading to this choice will be fully evi-
dent in the next section where the particle momentum
dynamics is explored in an extended way.

The latter case is of special interest for machine oper-
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FIG. 4: Measurement of the beam lifetime, τ , as a func-
tion of the RF-momentum aperture for three different sets
of chromaticities. The lines represent the fitted lifetime be-
havior for the nominal chromaticity case (solid blue line),
a case with higher vertical chromaticity (dashed-dotted red
line), and a case with higher chromaticities in both trans-
verse planes (dashed green line). The emittance coupling in
all cases was about 7% and the betatron tunes were νx = 14.25
and νy = 8.20. One can see that the dynamic momentum
aperture has a severe impact on the overall momentum aper-
ture and therefore the Touschek lifetime.

ation: while operating the ring with large single bunch
currents (so called two-bunch mode) the vertical chro-
maticity has to be significantly raised up in order to damp
single bunch instabilities. From Figure 4 it is clear that
the dynamic aperture impacts the momentum aperture.
This can be inferred from the fact that when the chro-
maticity is changed, the size of the physical aperture re-
mains fixed whereas the size of the momentum aperture
changes.

For all 3 cases shown in Figure 4 the fitted transverse
apertures are listed in Table II. As shown in the table,
the transverse apertures in the arcs vary by a large fac-
tor. Additional measurements were made for many other
machine conditions: different values of coupling, chro-
maticities, tunes, vertical aperture and insertion device
settings [5, 6].

It has thus been demonstrated that at the ALS, the
dynamic aperture limits the momentum aperture. In
sections V and VI we describe the measurements made
to understand these limitations in more detail and to
get a clear picture showing the dynamics of particle loss.
These experiments are conducted for the three different
chromaticities of Table II.

IV. OFF-MOMENTUM TRANSVERSE
DYNAMICS

In this section we examine the mechanism of Touschek
scattering in more detail. From radiation measurements
we know that the highest radiation levels (and thus the
highest loss areas) occur at the location in the ring where
the vertical vacuum chamber size is the smallest. At this
location, where the vertical beta function is 5 m, the
chamber height is ± 4 mm. Therefore we can conclude
that after a particle is Touschek scattered, it can reach
large vertical amplitudes. It is also known from momen-
tum aperture measurements that the dynamic aperture
is limiting the Touschek lifetime. In fact these observa-
tions can be well understood by looking at the transverse
particle dynamics: resonance excitation and orbit diffu-
sion drive particles to such high vertical amplitudes as
explained in this section.

A. Off-momentum simulations

The left side of Figure 5 shows a cartoon of the par-
ticle motion in the momentum and horizontal ampli-
tude space for a particle scattered to an initial value of
(δ0,

√
βxHxδ0). The red dot indicates the initial coor-

dinates of the particle. After the particle is scattered,
there is a rapid oscillation in δ — so called synchrotron
oscillations — and a slow damping in δ and horizontal
amplitude back to the nominal orbit (the green dot in
the figure). The time scales involved in these processes
are very different — the synchrotron oscillation period
is on the order of 100 turns whereas the damping time
on the order of 10,000 turns. It should be noted that
in this cartoon the damping times have been artificially
increased by a factor 10 for illustration.
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FIG. 5: Left: Schematic of particle behavior after Touschek
scattering. Initial particle position after being scattered (red
dot) then oscillating in energy and amplitude (red line) and
damping back down to the nominal orbit (green dot). Right:
particle motion tracked in the tune space (νx, νy), resonances
up to the fifth order are drawn in blue.

The right hand side of Figure 5 shows the tune change
in the frequency space. The nominal (zero amplitude)
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TABLE II: Fitted momentum apertures for three different conditions.

Chromaticity (hor./vert.) εstraight εarc A

ξx = 0.4, ξy = 1.4 >3% 2.65 ± 0.02% 1.01 ± 0.02

ξx = 0.4, ξy = 4.4 2.59 ± 0.07% 1.75 ± 0.02% 0.96 ± 0.02

ξx = 2.4, ξy = 4.4 2.63 ± 0.07% 1.93 ± 0.02% 0.99 ± 0.02

tune values are νx = 14.25 and νy = 8.20 (the green dot
in the figure). Just after being scattered, both the hor-
izontal and vertical tunes are shifted to smaller values
(the red dot in the figure). Then as the particle under-
goes momentum oscillations and damping, its tunes are
slowly modulated back and forth in the transverse tune
plane eventually returning to the nominal tune values.
During this process it is possible that some of the par-
ticles may encounter a region in tune space where their
motion is resonantly or diffusively excited to large verti-
cal amplitudes where they may collide with the vacuum
chamber.
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FIG. 6: Tracking with synchrotron oscillations and radiation
damping for a particle launched with initial amplitude of x =
12 mm, y = 0.5 mm, δ = 2%. At certain times the motion of
the particle is highly diffusive causing the vertical oscillation
amplitude to become larger than ±4 mm. In the ring, it would
lead to particle lost on the vacuum chamber.

An example of this is shown in Figure 6. We take the
case of the machine adjusted to the nominal chromaticity,
ξx = 0.5, ξy = 1.4. The linear machine model is fitted us-
ing measured response matrix data [24, 25] — linear cou-
pling errors are also included. A particle is launched with
initial conditions x = 12 mm, y = 0.5 mm, δ = 2% and
tracked using a full 6-dimensional tracking code includ-
ing synchrotron oscillations and radiation damping [26–
28]. The calculated horizontal, vertical, and longitudinal

turn-by-turn positions are plotted (Figure 6) over 3,500
turns. In the vertical plane the vacuum chamber height is
also drawn as dashed red lines at ± 4 mm. As seen in the
figure the longitudinal oscillations appear stable and are
slowly damping (due to radiation damping). However the
amplitude of the horizontal and vertical oscillations are
irregular and periods of rapid (chaotic) growth are ob-
served. At some point (around turn 3,000) the particle
reaches vertical amplitudes larger than ± 4 mm. There-
fore this particle becomes lost on the vacuum chamber.

Unfortunately it is difficult to exactly simulate this
process experimentally. The reason is that in order to
experimentally simulate Touschek scattering one would
like to have an instrument (or set of instruments) that
would simultaneously change the energy and amplitude
of the beam within one turn. Although it is possible to
give a single-turn large transverse kick to the beam, it is
impossible to give a single-turn energy kick of a tenth of a
GeV to a beam with an energy of 1.5 GeV. On the other
hand it is possible to slowly (adiabatically) change the
nominal energy of the beam. So instead of studying the
full 6-Dimensional case, we study the transverse dynam-
ics at different momenta — the off-momentum transverse
dynamics. We show in Section V that using this approach
we gain a better insight into the details of the particle
loss mechanisms.

Here we make the assumption that knowledge of the
off-momentum dynamics is what is relevant to under-
stand the full 6-Dimensional dynamics. In doing so the
transverse (x, px, y, py) dynamics is viewed as being
decoupled from the longitudinal (δ, l) dynamics. This
decoupling is possible due to the large difference in time
scales between the synchrotron oscillations (100 turns)
and betatron oscillations (few per turn).

Figure 7 shows a cartoon of the method which we used
to study the off-momentum transverse dynamics in the
amplitude and frequency space. A particle is launched to
a given horizontal amplitude then undergoes a damping
in amplitude without executing any synchrotron oscilla-
tions (compare with Figure 5). This measurement can be
used to identify amplitudes, momentum deviations, and
frequencies where beam loss occurs — presumably by
encountering regions where the motion is strongly non-
linear and chaotic. Therefore if the assumption that the
beam loss is determined by the transverse dynamics is
correct, this measurement is a way of locating the areas
of beam loss that the Touschek scattered particle might
experience.
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FIG. 7: Schematic of the measurement technique to study the
off-momentum dynamics. The starting horizontal amplitude
of a particle (red dot) undergoes damping down to the nomi-
nal orbit (green line) without any synchrotron oscillations for
a given momentum deviation, δ. Left: configuration space
with induced amplitude after a Touschek scattering (black
lines). Right: Tracked particle in tune space.

B. Off-momentum Frequency Map Analysis

In a previous study [29] we showed that it was possible
to measure experimentally resonant and chaotic behavior
in a storage ring using Frequency Map Analysis (FMA)
[30–32]. It was also demonstrated that we could correlate
particle loss to the zones with high diffusion [33]. In that
study we were only looking at the on-momentum dynam-
ics which is important for the understanding of particle
loss during injection process. In the present study we are
extending and modifying these techniques to probe the
off-momentum dynamics.

In Figure 8 FMA is used to explore the off-momentum
dynamics. The machine model is the same as the one
used to generate the tracking data in Figure 6. A fre-
quency map is drawn at three different values of the rel-
ative momentum deviation, δ (-3%, 0%, and +3%). To
generate each of the three maps the energy is fixed and
particles are launched with various different initial hori-
zontal and vertical amplitudes and tracked for N=1,000
turns without synchrotron oscillation or damping. For
surviving particles tunes are then computed with FMA
and plotted in the frequency space. Because of the tune
shift with energy (chromaticities), the maps of the three
cases do not lie on top of each other. The dynamics en-
countered by the beam changes a lot with the energy:
resonance orders and widths, diffusion rates, tune shifts
with amplitude. As a result the stability area shrinks
drastically for δ = −3%.

The color scheme exhibits the orbit diffusion defined as
D = 1

N log10 ||ν2−ν1|| where ν1 and ν2 are the transverse
tunes respectively determined over the first and last 500
turns of the particle tracking [31]. Blue regions describe
stable dynamics and red and yellow regions stand for
strong nonlinearity and chaos. As an example for the
δ = 0% map a large chaotic zone exists in the vicinity of
the tunes of νx = 14.2 and νy = 8.1 (see Figure 8). This

region is at the intersection of the third order resonance
νx − 2νy = −2 and the fifth order resonance 5νx = 71.
So a particle may become lost when its tunes are slowly
sweeping over this region.

−10

−9

−8

−7

−6

−5

−4

−3

14.1 14.12 14.14 14.16 14.18 14.2 14.22 14.24 14.26
8

8.05

8.1

8.15

8.2

ν
x

ν y

−3%

−2%

−1%

0%
1%

2%

3%

4%

FIG. 8: Frequency maps for three different momentum devia-
tions (-3%, 0% and +3%). The continuous green line indicates
the tune shift with energy for particles near the closed orbit.
The color code describes orbit stability from regular motion
(blue) to chaotic motion (red). On the top of the maps reso-
nance lines are drawn up to the fifth order.

To illustrate this we tracked a particle using the same
model that we used to generate the frequency maps ex-
cept that we now include synchrotron oscillations and
radiation damping. A particle is launched with an initial
condition corresponding to x = 10 mm, y = 0.5 mm, δ =
0% (see Figure 9). The horizontal and vertical amplitude
is recorded each turn for 10,000 turns. Due to radiation
damping the amplitudes tend to decrease, however at
certain times (indicated by (c), (b) and (a) in the figure)
there is rapid growth in the vertical plane.

One can see the corresponding position in the fre-
quency space on the right side of Figure 9. The tunes
were computed using FMA by dividing the 10,000 turn-
by-turn data into 40 blocks of 250 consecutive turns each.
As observed in the figure, the particle is damping down
to the nominal tunes. However, at certain points marked
(c), (b) and (a), the particle trajectory diffuses to larger
vertical amplitudes. The first change occurs at (c) when
the trajectory crosses the νx − 2νy = −2 resonance.
The second occurs at (b) when the trajectory crosses the
4νx + νy = 65 resonance and there is a third region (a)
where the particle crosses the resonance 3νx + 2νy = 59.
This behavior is consistent with the chaotic zones shown
in the frequency map in Figure 8. For this particle the
vertical amplitude only reaches a maximum of about
±3 mm (near point (b)) — and thus this particle would
not collide with the vacuum chamber (which is ±4 mm).
However other particles with slightly different initial con-
ditions can be excited to more than ±4 mm vertically and
will collide with the vacuum chamber. This suggests that
the momentum aperture should be a strong function of
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FIG. 9: Tracking of a particle with synchrotron oscillations
and radiation damping (in tune and configuration space).
When the trajectory crosses a region with high diffusion (see
labels (a) to (c)), the vertical oscillation amplitude increases
and at (c) the particle gets very close to the vacuum chamber
of 4 mm.

the vertical physical aperture. Measurements detailing
this are summarized in section VII.

V. EXPERIMENTAL MEASUREMENTS OF
THE DYNAMIC APERTURE

To study the off-momentum transverse dynamics at
the ALS storage ring three tools have been used:

• The first tool is a set of two fast pulsed mag-
nets called “pinger magnets”: each pinger magnet’s
pulse duration is only 600 ns. This is less than
the time it takes for electrons to execute one turn
around the ring. Therefore these magnets can pro-
vide a single-turn transverse kick to the electrons.
The amplitudes of the horizontal and vertical fields
can be adjusted independently.

• The second tool consists of turn-by-turn horizon-
tal and vertical beam position monitors (BPMs).
Each turn, the BPMs measure the transverse cen-
ter of charge of the electron beam as it revolves
around the ring. The BPMs can store up to 1,024
consecutive data points and are synchronized with

the pinger magnet pulse. In this way it is possible
to record the beam position of the first 1,024 turns
after the beam is kicked by the pinger magnets.

• The third tool is a beam current monitor (DCCT).
This monitor can record the current before and af-
ter the beam has been kicked allowing to measure
the relative beam loss.

In the experiments the nominal energy of the ma-
chine is shifted adiabatically by changing the RF-
frequency [13]:

δ = − 1
αc

∆fRF

fRF
. (10)

Then the beam is kicked with increasing horizontal
kick strength (keeping the vertical kick strength at a
small constant value). The relative change in beam cur-
rent as well as the turn-by-turn data for each point are
recorded. The measurements can then be repeated at
different values of δ. It is worth pointing out that this
technique works well for the ALS but may not be suitable
in rings with large circumferences where shifting the RF-
frequency can also cause a large change in the damping
partition numbers (see Appendix).

A. Normal chromaticity, on-momentum

An example of raw current measurement as a function
of the horizontal kick amplitude is plotted in Figure 10
for a momentum offset of δ = 0%. The storage ring pa-
rameters have been the same as in the cases described in
Section III, i.e. tunes at 14.25 and 8.20, emittance ratio
at about 7%. For this example the chromaticity of the
machine was adjusted to the ring’s nominal chromaticity
(ξx = 0.4, ξy = 1.4). The top plot in the figure shows the
measured beam current I as a function of the kick am-
plitude after each horizontal kick. The relative loss-rate
(In − In−1)/In−1, is plotted below. Here one can iden-
tify several step-like increases in the loss-rate at 7.8 mm,
9.6 mm, and 10.6 mm indicated by (a), (b), and (c) in
the figure, and there is a total beam loss at 12.6 mm as
indicated by (d).

The frequency analysis of the turn-by-turn data for
each kick amplitude will reveal to us the origins of these
beam losses. Figure 11 displays the data frequencies
(νx, νy). In this plot the size of the dot is related to the
relative loss-rate ((In− In−1)/In−1) — for legibility zero
loss corresponds to a finite dot size. First at a zero kick
amplitude tunes correspond to νx = 14.25 and νy = 8.20
(indicated by a (o) in the figure). As the kick ampli-
tude increases the tunes shift to smaller values. Around
(νx, νy) = (14.23, 8.15) (see point (a) in Figure 10), a
slight beam loss is observed associated to the crossing of
the resonance 3νx + 2νy = 59. The neighborhood of this
resonance, reached at a 7.8 mm kick amplitude, can be
identified as the lowest amplitude region harmful for the
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FIG. 10: Upper: Beam current versus kick amplitude. Lower:
First derivative of beam current versus kick amplitude. Each
change in beam loss is labelled by a letter.
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FIG. 11: Tunes and loss-rates as calculated from turn-by-turn
BPM data and DCCT. The labels defined as in Figure 10
indicate beam loss (dot size) increase near peculiar resonance
lines.

dynamics. Then at tunes of νx = 14.22 and νy = 8.11
there is a more significant change in the loss rate (b).
This occurs as the tune crosses the 5th order resonance
4νx + νy = 65. The loss rate further increases as the
tune crosses the third order resonance νx − 2νy = −2
as indicated by a (c) in Figure 11 and Figure 10 at an
amplitude of 10.6 mm. And finally there is a total beam
loss on the fifth order resonance 5νx = 71 as indicated by
(d). Thus using the frequency data enables us to identify

which resonances are responsible for particle loss.
A comparison of the experimental data (Figures 10

and 11) with the theoretical simulation (Figures 8 and 9)
reveals a consistent picture of the dynamics. The tune
shifts with amplitudes are the same and the high dif-
fusion zones in the simulation correspond to regions of
significant particle loss in the experiment.

Up to now only data for a single value of δ have been
shown. We will now present data for various momentum
offsets and 3 different values for the chromaticities.

B. Normal chromaticity, off-momentum

Figure 12 shows the results for the nominal chromatic-
ities (ξx = 0.4, ξy = 1.4). The relative loss-rates are
plotted both in the amplitude space (x, δ) (left) and in
the frequency space (right). In the amplitude space, the
induced amplitude versus energy of a particle that has
been Touschek scattered in the arcs is indicated by a red
dashed line; in the frequency space the change of tune
versus energy at a zero amplitude is indicated by a solid
green line.

As shown in the previous section it is possible to iden-
tify resonances and chaotic regions that limit the am-
plitudes by looking at the data plotted in the frequency
space. In this case several dangerous resonances or inter-
sections of resonances responsible for beam loss can be
identified. To help distinguish between different momen-
tum offsets we have plotted points with negative momen-
tum deviation in blue, on-momentum points in black, and
positive momentum deviation points in red. For large
negative momentum deviations the particle loss at high
amplitudes is caused by the integer resonance νy = 8
(area A in Figure 12). Around zero momentum devia-
tion the particles are lost in the neighborhood of several
resonances (5νx = 71, νx − 2νy = −2, see area B). At
large positive momentum deviations the lost is again due
to the integer resonance νy = 8 (area C) and the linear
coupling resonance νx − νy = 6 (area D).

Now that the amplitude and cause of the beam loss
have been found, it is possible to relate this case to the
fully 6-Dimensional case including synchrotron oscilla-
tions. In this way we can determine the limitation of the
dynamic and momentum aperture. When a particle is
Touschek scattered we have previously seen that it os-
cillates rapidly in momentum and its amplitude damps
slowly in momentum and transverse amplitudes towards
the beam center (Figure 5). If the particle encounters a
region of large loss rates during this process it may be
lost. For a particle that has been Touschek scattered in
the arcs up to |δ| ≤ 2.5%, corresponding to an induced
horizontal amplitude of ±9 mm (see Figures 5 and 12)
no region of large loss will be crossed. However there are
large loss regions at larger energy deviations and ampli-
tudes — the first being at 10 mm (both at δ = −2.5%
and at δ = 0.5%). From this measurement we can infer
that the limit of the dynamic momentum aperture in the
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FIG. 12: Measured momentum aperture in tune (right) and
in configuration space (left) for the chromaticity set (ξx =
0.4, ξy = 1.4). Point size indicates relative beam loss and
labels point out specific resonance areas responsible for these
losses. Resonances up to the fifth order are drawn in the tune
space.

arcs is slightly more than 2.5%. This compares well with
the value of 2.65% (see Table II) measured using the
technique described in Section III.

Through this measurement, the global dynamics of the
storage ring is revealed. Not only are the amplitude of
loss regions and the size of the dynamic aperture de-
termined, but also the resonances that are responsible
for loss are identified. All this provides us with a com-
prehensive understanding of the beam dynamics for this
particular machine condition.

C. Large vertical chromaticity, off-momentum

Figure 13 shows the results for the second case with
the higher vertical chromaticity (ξx = 0.4, ξy = 4.4).
When comparing the nominal chromaticity case shown in
Figure 12, we see that the aperture is reduced in several
areas. In particular we wish to point out the reduction in
the aperture at -2% and the large loss region extending
from 1.5% to 5%. In fact this loss region at positive δ
causes the lowest limit of the momentum aperture in the
arcs. It limits the aperture at a momentum deviation of
slightly more than δ = 1.5%, corresponding to an induced
amplitude, xind, of slightly less than 7 mm. The second
limitation at negative δ limits the aperture less than δ =
−2.0% (corresponding to an induced amplitude slightly
more than 7 mm).

By looking at the frequency plot we see that the plot
is very different from the normal chromaticity case. The
negative δ limit corresponds to the integer resonance
(νy = 8). This is true as well for the normal chromaticity
case but due to the larger vertical chromaticity, this limit
is reached at lower values of |δ|. Note a second loss region
(B) similar to loss region (B) in Figure 12. The lowest
limitation occurs when the particle frequency approaches
the linear coupling resonance — a resonance that is de-
liberately excited to control the vertical beam size. The
reason that the coupling resonance is important is that
the tune shift with energy in the case with a larger verti-
cal chromaticity moves the tune to the other side of the
coupling resonance. Then the tune shift with amplitude
moves the tune down onto the coupling resonance where
there is beam loss. Based on this measurement one would
predict that the dynamic aperture would restrict the mo-
mentum aperture in the arcs to slightly more than 1.5%.
This compares well with the value of 1.75% measured
before (see Table II).

D. Large horizontal and vertical chromaticity,
off-momentum

When looking at the results of the initial momentum
aperture measurements in Section III it was not obvious
why increasing the horizontal chromaticity by two units
from ξx = 0.4 to ξx = 2.4 actually increased the mo-
mentum aperture. As previously stated this may seem
counter intuitive, but by looking at the data from the
dynamic aperture, the reason becomes clear.

In the previous case with high vertical chromaticity,
the linear coupling resonance limited the momentum
aperture. So one way to enlarge the aperture is to in-
crease the value of δ at which the tune crosses over the
linear coupling resonance. This is precisely what hap-
pens when the horizontal chromaticity is increased. Fig-
ure 14 shows the results for the high horizontal and verti-
cal chromaticities (ξx = 2.4, ξy = 4.4). By increasing the
horizontal chromaticity we shift the effect of the coupling
resonance to larger positive momentum deviations, thus
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FIG. 13: Measured momentum aperture in tune (right) and
in configuration space (left) for the chromaticity set (ξx =
0.4, ξy = 4.4). Point size indicates relative beam loss and
labels point out specific resonance areas responsible for these
losses. Resonances up to the fifth order are drawn in the tune
space.

increasing the size of the aperture to about 2%; now the
lifetime is limited by the integer resonance. This com-
pares well with the value of 1.9% measured before (see
Table II).

It should be mentioned that we first studied the case
of (ξx = 0.4, ξy = 4.4), discovered the limitation of the
coupling resonance, and then predicted that increasing
the horizontal chromaticity would increase the lifetime.
So this technique was used in a predictive way to improve
the performance of the machine.

VI. SIMULATIONS OF THE DYNAMIC
APERTURE

The method presented in the previous section provides
a model independent way to obtain a global picture of the
off-momentum dynamics. It can be used to understand
limitations of the dynamic momentum aperture and pro-
vide guidance on how to improve the machine perfor-
mance. Furthermore it has been demonstrated that the
mechanisms causing particle loss are well understood and
that tracking simulations for individual particle trajecto-
ries agree well with the measured dynamics.

In order to evaluate, whether the machine model used
in those tracking studies is a good global representation
of the real machine and whether one can predict the off-
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2.4, ξy = 4.4). Point size indicates relative beam loss and
labels point out specific resonance areas responsible for these
losses. Resonances up to the fifth order are drawn in the tune
space.
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momentum dynamic aperture with sufficient precision,
additional tracking studies were performed. Particle tra-
jectories were tracked for a large set of initial conditions
in the configuration space formed by horizontal oscilla-
tion amplitude and momentum deviation. Afterwards,
the transverse oscillation frequencies for each of those
trajectories were calculated, similar to the method used
in the experiment.

Figures 15-17 show the results of those simulations
(tracking the particle coordinates for 1,000 turns with-
out synchrotron radiation nor radiation damping) for the
three different chromaticity cases with an initial vertical
amplitude y0 = 0.5 mm, except in the bottom part of Fig-
ures 15 where the initial vertical amplitude was raised to
2 mm. The color code in the plots indicates the diffusion
rate on a logarithmic scale. Blue areas indicate low dif-
fusion, red areas high diffusion and white areas indicate
regions where the particles were lost during the tracking
before reaching 1,000 turns. In addition, the measured
normalized beam loss rates as a function of momentum
deviation and initial horizontal oscillation amplitudes are
shown as red dots in the plots (compare Figures 12-14).

The general features of the simulation and the mea-
sured beam loss agree very well. Areas where particles
were lost before reaching 1,000 turns in the simulation are
clearly outside the stable areas in the measurements as
well. In addition, in many cases one can associate an area
with high diffusion in the simulation to areas with beam
loss in the measurements. Plotting the simulation data
in the tune space instead of configuration space (similar
to the way it is done in the experimental case, compare
Figures 12-14) can then help identify which of the reso-
nances are harmful and provide guidance how to improve
the stability of trajectories.

However (as can be seen in Figure 15), the simulations
show significantly more diffusive areas and more details
than the measurements. Therefore it is not trivial to
evaluate which of the diffusive areas might be harmful by
just looking at this kind of simulations. The main rea-
son is that the particle loss happens in the vertical plane
(as shown earlier), whereas in these simulations, the con-
figuration space of momentum deviation and horizontal
oscillation amplitude is plotted. Those simulations there-
fore provide an estimate of the initial diffusion rate of the
particle trajectories, but they do not provide information
about the direction of the diffusion. If the trajectory re-
mains at low vertical oscillation amplitudes (i.e. the dif-
fusion happens in the horizontal amplitude configuration
space), the diffusion might not lead to particle loss.

Nevertheless, there are two possible methods to get the
necessary information. The first one is to compare simu-
lation results with results of measurements in a situation
not too different from the one which one wants to make
predictions about. This way one can gauge what type of
diffusive areas might be harmful resulting in a high level
of confidence about the predictions. The second method
employs the use of many frequency maps (calculated in
the configuration space formed by horizontal and verti-

FIG. 15: Comparison of simulation of the dynamic momen-
tum aperture and measurement of normalized beam loss in
configuration space (ξx = 0.4, ξy = 1.4). The color code in-
dicates the orbit diffusion on a logarithmic scale. Blue areas
indicate low diffusion, red areas high diffusion and white areas
indicate regions where the particles were lost during the track-
ing before reaching 1,000 turns. The top picture is obtained
with initial vertical amplitude y0 = 0.5 mm, while in the bot-
tom figure, the simulation is performed with y0 = 2 mm which
increases the size of the chaotic zones.

cal oscillation amplitude) for various, fixed momentum
offsets (compare Figure 8). This way one can evaluate
the possible directions of the diffusion for a given mo-
mentum offset and therefore conclude, whether an area
indicating high diffusion at low vertical amplitude found
in Figures 15-17 can lead to particle loss or not.

Figure 16 shows the comparison of simulation and mea-
surement data for the high vertical chromaticity case.
The overall agreement again is very good and one can
clearly see the reduction of the momentum aperture com-
pared to the low chromaticity case caused by the vertical
integer resonance for negative momentum offsets and by
the coupling resonance for positive momentum offsets.

In Figure 17 the simulation results for the dynamic mo-
mentum aperture of the case with high horizontal and
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FIG. 16: Comparison of simulation of the dynamic momen-
tum aperture and measurement of normalized beam loss in
configuration space (ξx = 0.4, ξy = 4.4).

FIG. 17: Comparison of simulation of the dynamic momen-
tum aperture and measurement of normalized beam loss in
configuration space (ξx = 2.4, ξy = 4.4).

high vertical chromaticity are shown together with the
measured normalized beam loss data. Again the sim-
ulation shows as well as the measurement, that the loss
area caused by the coupling resonance is shifted to higher
positive momentum deviations compared to the previous
case. Therefore the momentum aperture is now limited
by the vertical integer resonance at negative momentum
deviations.

Overall, these simulations provide a good tool to qual-
itatively understand the global off-momentum dynamics
and using the two additional techniques described above,
they can lead to an accurate estimate of the dynamic mo-
mentum aperture.

This method has been used during the Superbend
project at the ALS, where three normal conducting bend-
ing magnets in the middle of three of the twelve triple
bend achromat cells have been replaced by supercon-

ducting ones, expanding the capabilities of the ALS in
the areas of hard x-rays [34]. The installation of the
Superbends broke the original 12-fold symmetry of the
ALS, significantly changing the nonlinear single parti-
cle dynamics. Therefore is was very important to be
able to reliably predict what impact this would have
on the dynamic momentum aperture and therefore the
lifetime. The predictions using this simulation method
proved to be quite accurate. Nevertheless, it should be
stressed that Figures 15-17 depend very much on the ini-
tial phases, and these analysis should be continued and
completed by equivalent analysis in the frequency do-
main, where the results will be more independent of the
phases [35].

VII. DEPENDENCE OF THE MOMENTUM
APERTURE ON THE VERTICAL PHYSICAL

APERTURE

The loss of particles due to resonant excitation of their
motion or due to diffusion happens mostly in the verti-
cal plane (compare Section IV). Therefore one should
expect that the momentum aperture depends on the ver-
tical aperture. To study this effect quantitatively, mea-
surements of the dependence of the momentum aperture
of the ALS on the vertical physical aperture were also
performed.

In the measurements, the vertical physical aperture
was set to various values by using a vertical scraper. The
scraper—like the narrow gap vacuum chambers which
normally restrict the vertical physical aperture to about
±4 mm— is located in one of the twelve straight sections
of the ALS where the vertical beta function is about 4 m.
For a given scraper setting the beam lifetime was mea-
sured as a function of the RF-momentum aperture, εRF ,
and the momentum aperture was determined from a fit to
this data (compare Figure 3 and Equation 9). The results
of the measurement are shown in Figure 18. One can see
that the (transverse) momentum aperture in the arcs is
a strong function of the vertical physical aperture. It de-
creases monotonously for physical aperture smaller than
the nominal ±4 mm and becomes nearly zero around a
vertical physical aperture of about 1 mm. One should
remark that the vertical beam size at the location of the
scraper for typical emittance coupling is σy ≤ 30 µm,
which means that ±1 mm still corresponds to a phys-
ical aperture of more than ±30 σy. Another result of
the measurement was that the momentum aperture in
the straight sections did not change significantly as a
function of the vertical physical aperture. It remained
at values larger than 3% (i.e. at values larger than the
RF-momentum aperture achievable with the current RF-
system of the ALS) for all settings of the scraper all the
way down to a vertical physical aperture of only 1 mm.
Based on the understanding of the loss mechanism as
described in Section IV this was the expected behavior.

The fact that the momentum aperture and therefore
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FIG. 18: Measurement of the momentum aperture in the arc,
εarc, as a function of the vertical physical aperture yphys. εarc

was calculated by individually fitting the results of lifetime
measurements as a function of the RF-momentum aperture
for various settings of a vertical scraper.

the beam lifetime is a strong function of the vertical
physical aperture is of special importance for synchrotron
light sources. Since the performance (photon brightness)
which can be achieved with an undulator depends crit-
ically on the gap of the magnetic undulator structure,
there is a strong incentive to make the undulator gap and
therefore the physical aperture of the vacuum chamber
as small as possible. Recently several second and third
generation synchrotron light sources have been equipped
with insertion devices with smaller and smaller gaps. The
measurements presented here underline that it is very im-
portant to study the impact which the reduced vertical
physical aperture has on the momentum acceptance in
addition to studies of vacuum, impedance and radiation
issues.

VIII. CONCLUSION

Short beam lifetimes are one of the major performance
limitations in particle storage rings. The beam lifetime
in many particle storage rings is limited by particles be-
ing Touschek scattered outside of the ring’s momentum
aperture. Up to now the beam lifetimes which have been
realized have been smaller than predicted as a result of
the momentum aperture limitations. Measurements at
the ALS as well as other storage rings have demonstrated
that the dynamic aperture is the dominant effect deter-
mining the size of the momentum aperture.

Employing the method of frequency analysis to study
the off-momentum transverse dynamics provides a very
powerful model independent diagnostic tool to visualize
the global dynamics of the system and understand the
aperture limitations. In particular, this tool helps to
identify regions in the frequency space where beam loss

occurs. The present study demonstrates that the knowl-
edge of the off-momentum transverse dynamics allows
accurate prediction of the momentum apertures at the
ALS and can suggest strategies to improve its dynamics.
Even with just two sextupole families at the ALS, the
knowledge of the off-momentum dynamics allowed us to
adjust the chromaticity (increasing the horizontal chro-
maticity) resulting in increased lifetimes by 25%.

The agreement is very good between the estimated dy-
namic momentum aperture from the measurements us-
ing a pinger magnet and the direct measurement us-
ing the RF-amplitude scans. As mentioned in Section
IV, since it is not possible to give a single-turn momen-
tum kick to the beam with a large amplitude, it was
not possible to simulate exactly the full 6-Dimensional
dynamics of Touschek scattering. It was only possible
to study the off-momentum dynamics. The results pre-
sented here are a demonstration of the validity of the
assumption (made in Section IV) that the knowledge of
the off-momentum dynamics is relevant in understanding
the full 6-Dimensional dynamics.

However, even if it were possible to study the full
6-Dimensional dynamics, the time span limits imposed
by decoherence would not allow us to separate the
synchrotron contributions to the betatron frequencies.
There is an additional advantage to study the off-
momentum dynamics. Using the beam oscillation data,
which was recorded as additional information, one can
identify in tune space the resonances that cause those
loss regions. The analysis showed that the large differ-
ence in lifetime is not caused by a large difference in
strength of resonances, but by the fact that different lin-
ear chromaticities cause the particles to sample different
regions in phase space, and thus experience different sets
of resonances (Section V).

The agreement between measured data and simulation
results which are based on calibrated machine models is
good. The simulations show that the loss regions cor-
respond to resonances and intersections of resonances
where the particle motion is resonantly or diffusively ex-
cited to large vertical amplitudes, causing the particle
to collide with the vacuum chamber. This is consistent
with the fact that the highest loss rates are measured
at the narrowest vertical gap chambers. These studies
provide both confidence in the model and the possibility
to accurately predict the performance of upgrades to the
ALS.

In most other storage rings, knowledge of the off-
momentum dynamics will allow us to accurately predict
the momentum aperture. Therefore these techniques will
be important for understanding and improving the mo-
mentum apertures in existing storage rings as well as
precisely predicting the momentum apertures in future
accelerators.
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APPENDIX: DAMPING PARTITION NUMBERS

The radiation of charged particles circulating in a stor-
age causes a slow damping of the betatron and syn-
chrotron oscillation amplitudes of the particle. The time
it takes for the oscillation amplitudes to damp by one
e-folding is called the damping time, τ . In the study of
the off momentum dynamics, the reference momentum
is adjusted by changing the RF frequency. However this
also modifies the damping times. If the change in the
damping times is large the motion becomes antidamped
in one plane making this technique unsuitable. This is
particularly important for large rings as shown below.

The damping times (τx, τy, τz) are inversely propor-
tional to the damping partition numbers (Jx, Jy, Jz)
whose values are, for a storage ring with mid-plane sym-
metry [20]:

Jx = 1−D, Jy = 1, Jz = 2 + D, (A.1)

with

D =

∮
η
ρ ( 1

ρ2 + 2K)ds∮
1
ρ2 ds

, (A.2)

where ρ, K and η are respectively the local curvature
radius, the linear field gradient, and the dispersion func-
tion of a magnet. In order to keep the motion of the
particles simultaneously damped in the horizontal and
longitudinal planes (Jx,z > 0), D should satisfy the sta-
bility condition (A.1) :

−2 < D < 1. (A.3)

When varying the RF-frequency, the closed orbit shifts
in the quadrupoles which are located in regions of finite
dispersion (ηQ). Then the value of D is changed by the
quantity:

∆D ≈ 2
ρ2

D

NDLD
δ

∑

QuadFamilies

NQLQ(KQηQ)2

= A× δ, (A.4)
where NQ, LQ, and KQ are respectively the number,
the length and gradient for each family of quadrupoles
(dipoles). Stating D = D0 + ∆D and combining Equa-
tion A.3 and A.4 the stability condition becomes:

−2−D0

A
< δ <

1−D0

A
. (A.5)

Taking the ALS as an example, parameter values from
Table III give A = 9 and D0 = −0.4. The full range
in which there is damping in both planes is ∆δ = 3/A
which is 33% (-18%, +16%) for the ALS. This is much
greater than the range of interest for the study of the
off-momentum dynamics (±5%).

TABLE III: ALS and APS parameters for dipoles (Dip) and
quadrupoles (Quad) in dispersive region.

N L (m) K (Tm−1) ρ (m) η (m)

ALS

Dip 24 0.45 2.89 0.25

Quad 36 0.87 −0.81 4.96

APS

Quad1 80 0.50 -0.81 0.20

Quad2 80 0.60 0.78 0.40

Dip 80 3.06 38.96

However for larger rings it may not be the case any-
more. A small change in momentum gives a large change
in damping rates. For instance, at the Advanced Photon
Source in Chicago [36], the range is −2.8% < δ < 1.4%
using Table III [37]. This limits this technique’s useful-
ness in exploring the off-momentum transverse dynamics
in these larger rings.
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